Preparation and Magnetic Properties of $BaFe_{12}O_{19}$ Particles Coated with Epitaxially Grown Fe_3O_4 Layers: $6xFe_3O_4(1 - x)BaFe_{12}O_{19}$

M. KIYAMA, T. HONMYO,* N. NAKAYAMA,† AND T. SHINJO

Institute for Chemical Research, Kyoto University, Uij, Kyoto-fu 611, Japan

Received September 30, 1991; in revised form February 12, 1992; accepted February 13, 1992

Platelike particles of BaFe₁₂O₁₉ with epitaxially grown Fe₃O₄ overlayers, $6xFe_3O_4(1 - x)Ba$ Fe₁₂O₁₉, were prepared by a wet method. The structure was characterized by X-ray diffraction and TEM and SEM observations. Magnetic properties were studied by VSM and Mössbauer spectroscopic measurements. In order to study the magnetic behavior of very thin Fe₃O₄ overlayers, Mössbauer measurements were applied to enrich samples, $6x^{57}Fe^{56}Fe_2O_4(1 - x)Ba^{56}Fe_{12}O_{19}$, prepared from alkaline suspensions of Ba⁵⁶Fe₁₂O₁₉ particles and ⁵⁷Fe(OH)₂. © 1992 Academic Press, Inc.

1. Introduction

Hexagonal platelike particles of barium ferrite, BaFe₁₂O₁₉, have attracted renewed attention as a candidate for perpendicular magnetic recording material. For the purpose to reduce the too-high coercive force, Hc, a partial substitution of Fe^{3+} with a $Co^{2+} + Ti^{4+}$ pair was attempted. However, not only the decrease of Hc but also the reduction of magnetization, M, has resulted (1). If the surfaces of $BaFe_{12}O_{19}$ particles are able to be coated with Fe_3O_4 layers, an increase in M seems to be possible simultaneously with the decrease in Hc. The present authors succeeded in preparing Ba $Fe_{12}O_{19}$ particles coated with epitaxially grown Fe₃O₄ layers by aging platelike particles of $BaFe_{12}O_{19}$ in the presence of $Fe(OH)_2$

in N₂. The experimental results on the preparation, characterization, and magnetic measurements are presented in this paper. For Mössbauer spectroscopic measurements specifically to study the Fe₃O₄ layers, ⁵⁷Fe-enriched samples were prepared. On the surface of BaFe₁₂O₁₉ particles composed of only ⁵⁶Fe³⁺, the enriched Fe₃O₄ layer coating was carried out by using ⁵⁷Fe(OH)₂. Thus, the Mössbauer spectra exclusively represent the behaviors of very thin Fe₃O₄ layers on BaFe₁₂O₁₉ particles.

2. Experimental

Platelike particles of $BaFe_{12}O_{19}$ with the BET surface area, S, of 7 m²/g were prepared by a procedure similar to the one previously described (2). A suspension, containing 0.092 M Ba(II), 0.734 M Fe³⁺ and 6 M excess NaOH, was subjected to autoclaving at 300°C for 5 hr. The resulting precipitate was well washed with water and separated by filtration. The filtrated precipitate, containing 53.5 wt% of BaFe₁₂O₁₉ was

^{*} Present address: Toda Kogyo Corp., 4-2 Funairiminami, Hiroshima 733, Japan.

[†] Present address: Department of Chemistry, Faculty of Science, Kyoto University, Kitashirakawa, Kyoto 606, Japan.

stored in a polyethylene container. A part of the precipitate was dried in air at 100°C to apply physical measurements.

Suspensions of 30 ml including 3.6 mmol BaFe₁₂O₁₉ and different amounts of NaOH and FeSO₄, in 60 ml tetrafluoethylene bottles were stirred ultrasonically for 15 min and diluted with water up to 50 ml. The sample formation in the absence of excess NaOH in the starting suspension, BaFe₁₂O₁₉ + $6xFeSO_4$ + 12xNaOH, is expressed as

$$BaFe_{12}O_{19} + 6xFe(OH)_2 + 6xNa_2SO_4$$

$$\rightarrow 6xFe_3O_4(1 - x)BaFe_{12}O_{19}$$

$$+ 5xNa_2SO_4 + xBaSO_4 + 2xNaOH,$$

where H_2O molecules are abbreviated.

The bottle containing the suspension was stoppered by a tetrafluoethylene cap in N_2 and was subjected to aging at temperatures between 50 and 100°C for 5 hr. During the course of aging, the suspension was vigorously shaken up for 1 min at every hour. The pH of the suspension subjected to aging was decreased to 4 at room temperature with the addition of 1 *M* HCl to remove the remaining Fe(OH)₂ and then each black, ferromagnetic precipitate in the acidic suspension was separated by filtration, well washed with water, treated with acetone, and dried at 40°C. The content of Fe²⁺ in the acidic filtrate, separated from the acidic suspension, was estimated by means of $K_2Cr_2O_7$ titration. The BaSO₄ content in the sample was measured by gravimetric analysis, after it had been dissolved into HCl by heating.

In order to characterize the obtained samples, X-ray diffraction (XRD), transmission and scanning electron microscope (TEM and SEM), magnetic measurements up to 10 kOe at room temperature by a vibrating sample magnetometer (VSM), and Mössbauer spectroscopic measurements were applied.

The relative contents of Fe₃O₄ in each sample, were estimated from the content of BaSO₄, and the difference in *M*, before and after aging, by assuming that the *M*-values at 10 kOe of BaFe₁₂O₁₉ and Fe₃O₄ are 48.3 and 84.7emu/g, respectively (see Table II). The Fe₃O₄ content was also estimated by comparing the relative intensities of XRD peaks of Fe₃O₄(d(311) = 2.532Å), Ba Fe₁₂O₁₉(d(107) = 2.77 Å), and Ba SO₄(d(210) = 3.319 Å).

The Ba⁵⁶Fe₁₂O₁₉ sample with 5 m² g⁻¹ in S, consisting only of hexagonal, platelike particles, was prepared under conditions similar to those for the BaFe₁₂O₁₉ preparation above mentioned by using an acidic solution of ⁵⁶Fe³⁺ (99%) prepared by dissolving ⁵⁶Fe₂O₃ into HCl solution. The $6x^{57}$ Fe⁵⁶Fe₂O₄(1 - x)Ba⁵⁶Fe₁₂O₁₉ samples

TABLE I

PREPARATION CONDITIONS, COMPOSITIONS, X, AND MAGNETIC PROPERTIES OF SEVERAL XBaSO₄ + $6XFe_3O_4$ (1 - X)BaFe₁₂O₁₉ Samples Prepared by Aging the suspensions of BaFe₁₂O₁₉ + $6XFe(OH)_2$ with $X = \frac{1}{3}$

Sample	Excess NaOH (M)	T (°C)	M (emu/g)	Hc (Oe)	Fe ²⁺ (mmol) ^a	BaSO ₄ (wt%)	<i>X</i> ₁	<i>X</i> ₂	X3
A	0	100	54.7	550		4.3	0.22	0.20	0.19
В	0.9	100	57.4	550	0.2	4.6	0.24	0.27	0.29
С	2	100	57.6	590	0.2	4.8	0.25	0.31	0.30
D	2	70	56.9	650	1.1	3.4	0.18	0.20	0.26
E	2	50	52.9	720	2.3	2.9	0.15	0.15	0.14

Note. X_1 , X_2 and X_3 are the values estimated from the BaSO₄ content, XRD peaks, and the difference in M, respectively.

^a Fe²⁺ in filtrate.

were prepared without the process of an acidic treatment (decreased to pH = 4) by using an acidic solution prepared in nitrogen by dissolving ⁵⁷Fe metal(95%) into HCl solution.

3. Results and Discussion

The basic BaFe₁₂O₁₉ particles have a platelike shape with a typical size of 1 μ m in diameter and 0.06 μ m in thickness. Alkaline suspensions containing Fe^{2+} and $BaFe_{12}O_{19}$ particles were subjected to aging at temperatures between 50 and 100°C and, then ferromagnetic, brownish or black precipitates consisting of $6xFe_3O_4(1 - x)BaFe_{12}O_{19}$ and small amounts of BaSO₄ were formed. In Table I, several examples of obtained samples from the starting suspensions, containing 0.144 M Fe²⁺ and 0.864 M Fe³⁺ (corresponding to 72 mM BaFe₁₂O₁₉) and different concentrations of excess NaOH, are listed. The composition, x, of the products becomes greater with the increases in excess NaOH concentration and temperature, reaching near $\frac{1}{3}$ in x of the starting suspensions. The properties of samples obtained at 100°C with varying the Fe²⁺ concentration at 2 M excess NaOH are given in Table II, together with the starting material, x = 0. Figures 1 and 2 show the XRD patterns and SEM photographs for three typical

FIG. 1. XRD patterns of $6XFe_3O_4(1 - X)BaFe_{12}O_{19}$ samples: (a) sample F, (b) sample C, and (c) sample H. •, BaFe₁₂O₁₉; \bigcirc , Fe₃O₄; \times , BaSO₄.

samples. The XRD pattern changes from that of $BaFe_{12}O_{19}$ to that of Fe_3O_4 (a slight amount of $BaSO_4$ in addition), with the increase in x to 1.0. On the other hand, the shape of each particle in the samples remains nearly as the original one, regardless of the compositional change.

Figure 3 shows an electron diffraction (ED) pattern together with an example of TEM picture, which was taken for a sample with a smaller particle size for the convenience of electron transmission. Lattice fringes of $BaFe_{12}O_{19}$ (d(002) = 1.1 nm) and Fe_3O_4 (d(111) = 0.5 nm) are very clearly observed, which indicate that the Fe₃O₄ lay-

TABLE II

Estimated Compositions, X, of the XBaSO₄ + $6XFe_3O_4(1 - X)BaFe_{12}O_{19}$ Samples Prepared at 100°C for 5 hf from Suspensions Containing 72 m*M* BaFe₁₂O₁₉(F), 2 *M* Excess NaOH, and 0.072(G) and 0.43 *M* Fe²⁺(H).

Sample	M (emu/g)	Hc (Oe)	BaSO₄ (wt%)	X_1	<i>X</i> ₂	X_3
 F	48.3	1100	0	0	0	0
G	53.0	780	2.7	0.13	0.16	0.16
н	71.7 ^a	230	12.6	0.84	1	0.96
\mathbf{I}^{b}	85.3	190	0	_	1.00	1.00

^a Increases to 72.7 if prepared in the presence of 0.5 M Fe(II).

^b Prepared in the presence of 0.6 M FeCl₂ in place of the sulfate.

FIG. 3. (a) ED pattern of $6XFe_3O_4(1 - X)BaFe_{12}O_{14}$ with $X = \frac{1}{3}$. The electron beam is along the normal of the sample plane. (b) TEM photograph of $6XFe_3O_4(1 - X)BaFe_{12}O_{14}$ with $X = \frac{1}{3}$ with the electron beam parallel to the sample plane. The sample for TEM measurement was prepared from a starting $BaFe_{12}O_{19}$ particles with smaller size (0.1 μ m in diameter) under the same condition with sample C.

FIG. 4. Mössbauer absorption spectra at 300 K of ${}^{57}\text{Fe}{}^{56}\text{Fe}{}_{2}\text{O}_{4}$ layers grown on $\text{Ba}{}^{56}\text{Fe}{}_{12}\text{O}_{19}$ particles with different thicknesses: (a) 1, (b) 2, (c) 4 unit cells, and (d) Fe₃O₄.

ers were grown epitaxially on the surface of $BaFe_{12}O_{19}$ particle and Fe_3O_4 (111) planes are parallel to $BaFe_{12}O_{19}$ (001). The very sharp interface evidences that the growth of Fe_3O_4 is in a layer-by-layer fashion.

Mössbauer absorption spectra for enriched samples, prepared by aging at 100°C the suspensions containing 2 M excess NaOH, Ba⁵⁶Fe₁₂O₁₉ (with 1160 Oe in Hc and 45.9 emu g⁻¹ in M), and slight amounts of ⁵⁷Fe(OH)₂ (with 0.01, 0.02, and 0.04 in the ⁵⁷Fe(⁵⁶Fe ratio) are shown in Fig. 4. The thickness of ⁵⁷Fe⁵⁶Fe₂O₄ layer with ⁵⁷Fe enrichment is hereafter expressed as the number of nominal ⁵⁷Fe⁵⁶Fe₂O₄ unit cells. Hc and M for 2 unit-cell and 4 unit-cell samples are 1100 Oe, 45.9 emu g⁻¹ and 1063 Oe, 46.7 emu g⁻¹, respectively. Figure 4 shows the spectra at room temperature for the samples whose ⁵⁷Fe⁵⁶Fe₂O₄ layer thicknesses with ⁵⁷Fe enrichment were 1, 2, and 4 unit cells. The spectrum for the sample completely converted into Fe_3O_4 , with keeping the hexagonal platelike particle shape, is also shown for comparison, which is almost identical to that of Fe_3O_4 in the literature (3). All the spectra for the surface ${}^{57}\text{Fe}{}^{56}\text{Fe}{}_{2}\text{O}_{4}$ layers consist of ferromagnetic six-line patterns. The spectrum for the 1-unit-cell sample is especially broad because the hyperfine field of the topmost atom layer is smaller than the bulk and perhaps because of quadrupole interaction (4). The spectra for 2and 4-unit-cell samples also are fairly broad, and the Fe³⁺ contribution seems to be much more dominant than the Fe^{2+} contribution in the spectra. This is due to the oxidation of the sample surface. For the Mössbauer measurements, dried samples were prepared in N₂ but the surface layers were oxidized because of short time contact with air. This result therefore does not mean that the very thin Fe_3O_4 is nonstoichiometric but the surface of present Mössbauer samples is in an intermediate state between Fe_3O_4 and γ - Fe_2O_3 .

The Mössbauer absorption spectra for the 2-unit-cell sample were measured in nitrogen at various temperatures and in Fig. 5, the mean hyperfine field is plotted as a function of temperature. The intrinsic Curie temperatures of Fe₃O₄ or γ -Fe₂O₃ are 585 and

FIG. 5. Temperature dependence of hyperfine field in ${}^{57}\text{Fe}{}^{56}\text{Fe}{}_{2}\text{O}_{4}$ layers on Ba ${}^{56}\text{Fe}{}_{12}\text{O}_{19}$ particles with the thickness of 2 unit cells.

675°C, respectively, which are higher than that of BaFe₁₂O₁₉, 450°C (1). However, the temperature where the magnetic hyperfine structure collapses is not the Curie temperature of Fe₃O₄ or γ -Fe₂O₃ but is that of BaFe₁₂O₁₉. Since the overlayers of spinel ferrite are very thin, they are superparamagnetic if the BaFe₁₂O₁₉ matrix is paramagnetic. This result also is an evidence that Fe₃O₄ layers are epitaxially grown on Ba Fe₁₂O₁₉ particles and magnetically coupled with each other.

The present results indicate that the Fe²⁺, being in equilibrium with a precipitate of Fe(OH)₂, reacts with the Fe³⁺ on the surfaces of hexagonal platelike particles to form the Fe₃O₄ layers on the subsurfaces. The growth of the Fe₃O₄ layers is considered to be assisted by electron transfer through the interface into the particle. By adsorption of the Fe²⁺ on the (001) surface in the crystal structure of BaFe₁₂O₁₉, the Fe₃O₄ layers grow epitaxially on the surface with reduction of the Fe³⁺ in the interior and dissolution of Ba(II). (How Ba(II) dissolves is not understood presently).

In conclusion, the authors have succeeded in preparing epitaxially layer-bylayer grown Fe_3O_4 layers on the surface of $BaFe_{12}O_{19}$ particles.

Acknowledgments

The authors thank Professor N. Hosoito for Mössbauer and Dr. Z. Hiroi for TEM observation measurements, and discussion.

References

- C. D. MEE, *in* "Selected Topics in Solid State Physics" (E. P. Wohlfarth, Ed.), Vol. II, p. 207, North-Holland, Amsterdam (1963).
- M. KIYAMA, T. TAKADA, N. NAGAI, AND N. HORI-ISHI, *in* "Advances in Ceramics," Vol. 15, p. 51, Am. Ceram. Soc., Columbus, Ohio (1986).
- See, e.g., S. K. BANERJEE, W. O'REILLY, AND C. E. JOHNSON, J. Appl. Phys. 167, 1289 (1967).
- T. SHINJO, M. KIYAMA, N. SUGITA, K. WATANABE, AND T. TAKADA, J. Magn. Magn. Mater. 35, 133 (1983); see also a review: T. SHINJO, Surf. Sci. Rep. 12, 49 (1991).